昇思25天学习打卡营第6天|简单的深度学习模型实战 - 函数式自动微分

自动微分(Automatic Differentiation)是什么?微分是函数在某一处的导数值,自动微分就是使用计算机程序自动求解函数在某一处的导数值。自动微分可用于计算神经网络反向传播的梯度大小,是机器学习训练中不可或缺的一步。

这些公式难免让人头大,好在自动微分就是帮助我们“自动”解决微分问题的。机器学习平台如TensorFlow、PyTorch都实现了自动微分,使用非常的方便,不过有必要理解其原理。要理解“自动微分”,需要先理解常见的求解微分的方式,可分为以下四种:

  • 手动求解法(Manual Differentiation)
  • 数值微分法(Numerical Differentiation)
  • 符号微分法(Symbolic Differentiation)
  • 自动微分法(Automatic Differentiation)

所谓手动求解法就是手动算出求导公式,然后将公式编写成计算机代码完成计算。比如对于函数求微分,首先根据求导公式表找出其导数函数 ,然后将这个公式写成计算机程序,对于任意的输入 都能用这段程序求出其导数,也就是此时的微分。是不是很简单?

这样做虽然直观,但却有两个明显的缺点:

  • 每次都要根据手动算出求导公式然后编写代码,导致程序很难复用。
  • 更让人难受的是,复杂的函数普通人很难轻易写出求导公式

函数式自动微分

神经网络的训练主要使用反向传播算法,模型预测值(logits)与正确标签(label)送入损失函数(loss function)获得loss,然后进行反向传播计算,求得梯度(gradients),最终更新至模型参数(parameters)。自动微分能够计算可导函数在某点处的导数值,是反向传播算法的一般化。

自动微分主要解决的问题是将一个复杂的数学运算分解为一系列简单的基本运算,该功能对用户屏蔽了大量的求导细节和过程,大大降低了框架的使用门槛。

MindSpore使用函数式自动微分的设计理念,提供更接近于数学语义的自动微分接口grad和value_and_grad。下面我们使用一个简单的单层线性变换模型进行介绍。

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
import numpy as np
import mindspore
from mindspore import nn
from mindspore import ops
from mindspore import Tensor, Parameter

函数与计算图

计算图是用图论语言表示数学函数的一种方式,也是深度学习框架表达神经网络模型的统一方法。我们将根据下面的计算图构造计算函数和神经网络。

compute-graph

在这个模型中, 𝑥为输入, 𝑦为正确值, 𝑤和 𝑏是我们需要优化的参数。

x = ops.ones(5, mindspore.float32)  # input tensor
y = ops.zeros(3, mindspore.float32)  # expected output
w = Parameter(Tensor(np.random.randn(5, 3), mindspore.float32), name='w') # weight
b = Parameter(Tensor(np.random.randn(3,), mindspore.float32), name='b') # bias

我们根据计算图描述的计算过程,构造计算函数。 其中,binary_cross_entropy_with_logits 是一个损失函数,计算预测值和目标值之间的二值交叉熵损失。

def function(x, y, w, b):
    z = ops.matmul(x, w) + b
    loss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))
    return loss

执行计算函数,可以获得计算的loss值。

loss = function(x, y, w, b)
print(loss)
Tensor(shape=[], dtype=Float32, value= 0.914285)

微分函数与梯度计算

为了优化模型参数,需要求参数对loss的导数: ∂loss∂𝑤和 ∂loss∂𝑏,此时我们调用mindspore.grad函数,来获得function的微分函数。

这里使用了grad函数的两个入参,分别为:

  • fn:待求导的函数。
  • grad_position:指定求导输入位置的索引。

由于我们对 𝑤和 𝑏求导,因此配置其在function入参对应的位置(2, 3)。使用grad获得微分函数是一种函数变换,即输入为函数,输出也为函数。

grad_fn = mindspore.grad(function, (2, 3))

执行微分函数,即可获得 𝑤 、 𝑏对应的梯度。

grads = grad_fn(x, y, w, b)
print(grads)
(Tensor(shape=[5, 3], dtype=Float32, value=
 [[ 6.56869709e-02,  5.37334494e-02,  3.01467031e-01],
  [ 6.56869709e-02,  5.37334494e-02,  3.01467031e-01],
  [ 6.56869709e-02,  5.37334494e-02,  3.01467031e-01],
  [ 6.56869709e-02,  5.37334494e-02,  3.01467031e-01],
  [ 6.56869709e-02,  5.37334494e-02,  3.01467031e-01]]),
 Tensor(shape=[3], dtype=Float32, value= [ 6.56869709e-02,  5.37334494e-02,  3.01467031e-01]))

在这里插入图片描述

Stop Gradient

通常情况下,求导时会求loss对参数的导数,因此函数的输出只有loss一项。当我们希望函数输出多项时,微分函数会求所有输出项对参数的导数。此时如果想实现对某个输出项的梯度截断,或消除某个Tensor对梯度的影响,需要用到Stop Gradient操作。

这里我们将function改为同时输出loss和z的function_with_logits,获得微分函数并执行。

def function_with_logits(x, y, w, b):
    z = ops.matmul(x, w) + b
    loss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))
    return loss, z
grad_fn = mindspore.grad(function_with_logits, (2, 3))
grads = grad_fn(x, y, w, b)
print(grads)

(Tensor(shape=[5, 3], dtype=Float32, value=
[[ 1.06568694e+00, 1.05373347e+00, 1.30146706e+00],
[ 1.06568694e+00, 1.05373347e+00, 1.30146706e+00],
[ 1.06568694e+00, 1.05373347e+00, 1.30146706e+00],
[ 1.06568694e+00, 1.05373347e+00, 1.30146706e+00],
[ 1.06568694e+00, 1.05373347e+00, 1.30146706e+00]]),
Tensor(shape=[3], dtype=Float32, value= [ 1.06568694e+00, 1.05373347e+00, 1.30146706e+00]))

可以看到求得 𝑤、 𝑏对应的梯度值发生了变化。此时如果想要屏蔽掉z对梯度的影响,即仍只求参数对loss的导数,可以使用ops.stop_gradient接口,将梯度在此处截断。我们将function实现加入stop_gradient,并执行。

def function_stop_gradient(x, y, w, b):
    z = ops.matmul(x, w) + b
    loss = ops.binary_cross_entropy_with_logits(z, y, ops.ones_like(z), ops.ones_like(z))
    return loss, ops.stop_gradient(z)
grad_fn = mindspore.grad(function_stop_gradient, (2, 3))
grads = grad_fn(x, y, w, b)
print(grads)

(Tensor(shape=[5, 3], dtype=Float32, value=
[[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01]]),
Tensor(shape=[3], dtype=Float32, value= [ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01]))

可以看到,求得 𝑤 、 𝑏对应的梯度值与初始function求得的梯度值一致。

在这里插入图片描述

Auxiliary data

Auxiliary data意为辅助数据,是函数除第一个输出项外的其他输出。通常我们会将函数的loss设置为函数的第一个输出,其他的输出即为辅助数据。

grad和value_and_grad提供has_aux参数,当其设置为True时,可以自动实现前文手动添加stop_gradient的功能,满足返回辅助数据的同时不影响梯度计算的效果。

下面仍使用function_with_logits,配置has_aux=True,并执行。

grad_fn = mindspore.grad(function_with_logits, (2, 3), has_aux=True)
grads, (z,) = grad_fn(x, y, w, b)
print(grads, z)

((Tensor(shape=[5, 3], dtype=Float32, value=
[[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01]]),
Tensor(shape=[3], dtype=Float32, value= [ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01])),
Tensor(shape=[3], dtype=Float32, value= [-1.40476596e+00, -1.64932394e+00, 2.24711204e+00]))

可以看到,求得 𝑤 、 𝑏
对应的梯度值与初始function求得的梯度值一致,同时z能够作为微分函数的输出返回。

神经网络梯度计算

根据计算图对应的函数介绍了MindSpore的函数式自动微分,但我们的神经网络构造是继承自面向对象编程范式的nn.Cell。接下来我们通过Cell构造同样的神经网络,利用函数式自动微分来实现反向传播。

首先我们继承nn.Cell构造单层线性变换神经网络。这里我们直接使用前文的 𝑤、 𝑏作为模型参数,使用mindspore.Parameter进行包装后,作为内部属性,并在construct内实现相同的Tensor操作。

# Define model
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.w = w
        self.b = b
​
    def construct(self, x):
        z = ops.matmul(x, self.w) + self.b
        return z

接下来我们实例化模型和损失函数。

# Instantiate model
model = Network()
# Instantiate loss function
loss_fn = nn.BCEWithLogitsLoss()

完成后,由于需要使用函数式自动微分,需要将神经网络和损失函数的调用封装为一个前向计算函数。

# Define forward function
def forward_fn(x, y):
    z = model(x)
    loss = loss_fn(z, y)
    return loss

完成后,我们使用value_and_grad接口获得微分函数,用于计算梯度。

由于使用Cell封装神经网络模型,模型参数为Cell的内部属性,此时我们不需要使用grad_position指定对函数输入求导,因此将其配置为None。对模型参数求导时,我们使用weights参数,使用model.trainable_params()方法从Cell中取出可以求导的参数。

grad_fn = mindspore.value_and_grad(forward_fn, None, weights=model.trainable_params())
loss, grads = grad_fn(x, y)
print(grads)

(Tensor(shape=[5, 3], dtype=Float32, value=
[[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01],
[ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01]]),

Tensor(shape=[3], dtype=Float32, value= [ 6.56869709e-02, 5.37334494e-02, 3.01467031e-01]))
执行微分函数,可以看到梯度值和前文function求得的梯度值一致。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/762491.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C++】红黑树及其实现

目录 一、红黑树的定义1.为什么提出红黑树?2.红黑树的概念3.红黑树的性质 二、红黑树的实现1.红黑树的结构2.红黑树的插入2.1 uncle为红色2.2 uncle为黑色,且是grandfather的右孩子2.3 uncle为黑色,且是grandfather的左孩子 3.红黑树的验证 4…

SQLAlchemy(alembic)和Flask-SQLAlchemy入门教程

SQLAlchemy 是 Python 生态中最流行的 ORM 类库,alembic 用来做 OMR 模型与数据库的迁移与映射,Flask-SQLAlchemy 是 Flask 的扩展,可为应用程序添加对 SQLAlchemy 的支持,简化 SQLAlchemy 与 Flask 的使用。 一.SQLAlchemy 和 a…

C++——vector类用法指南

一、vector的介绍 1、vector是表示可变大小数组的序列容器 2、就像数组一样,vector也采用连续存储空间来存储元素。也就意味着可以采用下标对vector的元素进行访问,和数组一样高效。但又不像数组,它的大小是可以动态改变的,而且它…

Linux C 程序 【01】最小程序

1.开发背景 基于 RK3568 平台的基础上,编译一个在系统上运行的最小程序。 2.开发需求 由于 RK3568 作为宿主机,在上面编译程序比较慢,所以还是采用在 Ubuntu 下交叉编译后再拷贝到宿主机上运行。 设计实验: 1)搭建 M…

嵌入式学习——硬件(IIC、ADC)——day56

1. IIC 1.1 定义(同步串行半双工通信总线) IIC(Inter-Integrated Circuit)又称I2C,是是IICBus简称,所以中文应该叫集成电路总线。是飞利浦公司在1980年代为了让主板、嵌入式系统或手机用以连接低速周边设备…

mybatis实现多表查询

mybatis高级查询【掌握】 1、准备工作 【1】包结构 创建java项目,导入jar包和log4j日志配置文件以及连接数据库的配置文件; 【2】导入SQL脚本 运行资料中的sql脚本:mybatis.sql 【3】创建实体来包,导入资料中的pojo 【4】User…

使用Colly库进行高效的网络爬虫开发

引言 随着互联网技术的飞速发展,网络数据已成为信息获取的重要来源。网络爬虫作为自动获取网页内容的工具,在数据分析、市场研究、信息聚合等领域发挥着重要作用。本文将介绍如何使用Go语言中的Colly库来开发高效的网络爬虫。 什么是Colly库&#xff1…

志愿者管理系统带讲解,保运行

技术栈 后端: SpringBoot Mysql MybatisPlus 前端: Vue Element 分为 管理员端 用户端 功能描述 用户端 管理员端 观看地址: B站 : 【毕设者】志愿者管理系统(安装讲解源码)

MQTT QoS 0, 1, 2

目录 # 开篇 1. 精细MQS TT QoS的行为 1.1 QoS 0: 最多交付一次(At Most Once) 1.2 QoS 1: 至少交付一次(At Least Once) 1.3 QoS 2: 只交付一次(Exactly Once) 1.4 传输过程图示 1.5 总结 2. MQTT…

如何避免爬取网站时IP被封?

互联网协议 (IP) 地址是识别网络抓取工具的最常见方式。IP 是每个互联网交换的核心,对其进行跟踪和分析可以了解很多有关连接客户端的信息。 在网络抓取中,IP 跟踪和分析(又名指纹)通常用于限制和阻止网络抓取程序或其他不需要的访…

面向阿克曼移动机器人(自行车模型)的LQR(最优二次型调节器)路径跟踪方法

线性二次调节器(Linear Quadratic Regulator,LQR)是针对线性系统的最优控制方法。LQR 方法标准的求解体系是在考虑到损耗尽可能小的情况下, 以尽量小的代价平衡其他状态分量。一般情况下,线性系统在LQR 控制方法中用状态空间方程描…

汇聚荣拼多多电商好不好?

拼多多电商好不好?这是一个值得探讨的问题。拼多多作为中国领先的电商平台之一,以其独特的商业模式和创新的营销策略吸引了大量用户。然而,对于这个问题的回答并不是简单的好或不好,而是需要从多个方面进行综合分析。 一、商品质量 来看拼多…

【源码+文档+调试讲解】居家养老系统

摘要 随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了居家养老系统的开发全过程。通过分析高校学生综合素质评价管理方面的不足,创建了一个计算机管理居家养老系统的方案。文章介绍了居家养老系统的系统分…

jvm性能监控常用工具

在java的/bin目录下有许多java自带的工具。 我们常用的有 基础工具 jar:创建和管理jar文件 java:java运行工具,用于运行class文件或jar文件 javac:java的编译器 javadoc:java的API文档生成工具 性能监控和故障处理 jps jstat…

Sourcecodester Fantastic Blog CMS v1.0 SQL 注入漏洞(CVE-2022-28512)

前言 CVE-2022-28512 是一个存在于 Sourcecodester Fantastic Blog CMS v1.0 中的 SQL 注入漏洞。攻击者可以通过 "/fantasticblog/single.php" 中的 id 参数注入恶意 SQL 查询,从而获得对数据库的未经授权的访问和控制。 漏洞详细信息 漏洞描述: 该漏…

JavaScript将参数传递给事件处理程序

本篇文件我们将实现导航栏中,选中时候,会将您选中的进行高亮显示; ● 首先我们来获取我们想要的HTML元素 const nav document.querySelector(.nav);● 接着我们来写选中的高亮显示 nav.addEventListener(mouseover, function (e) { //鼠…

内网穿透小工具

内网穿透小工具 前言 当在本地或者虚拟机,内网搭建了项目,数据库。可是在外网无法访问。下面的两款小工具可以暂时实现内网穿透能力。(不支持自定义域名,但是不限制隧道数量!且免费!免费!免费…

【小贪】项目实战——Zero-shot根据文字提示分割出图片目标掩码

目标描述 给定RGB视频或图片,目标是分割出图像中的指定目标掩码。我们需要复现两个Zero-shot的开源项目,分别为IDEA研究院的GroundingDINO和Facebook的SAM。首先使用目标检测方法GroundingDINO,输入想检测目标的文字提示,可以获得…

互联网框架五层模型详解

注:机翻,未校对。 What is the Five Layers Model? The Framework of the Internet Explained 五层模型互联网框架解释 Computer Networks are a beautiful, amazing topic. Networks involve so much knowledge from different fields, from physics…

[OHOS_ERROR]: Please call hb utilities inside ohos source directory

当执行hb set报如下错误时:原因时重新拉取了源码,且源码路径被改了 [OHOS_ERROR]: Please call hb utilities inside ohos source directory 【解决办法】 卸载hb并在源码路径下重新安装 python3 -m pip uninstall ohos-build 安装hb python3 -m pi…
最新文章